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1 Introduction l f

The paper deals with the research activities in Italy on inverse "design and optimization. The review is focused

on aerodynamic aspects in turbomachinery and wing sections design.

Inverse design of blade rows and ducts of turbomachinery in subsonic and transonic regime are illustrated

here by the contributions of "Politecnico di Torino" and turbomachinery industry (FIAT AVIO).

As far as turbomachinery design is concerned, the development of an optimization technique is shown by the

contributions of the "Universita' di Genova".

Contributions from the " Universita' di Bari " illustrate recent progress in aerfoils design in the field of
subsonic flow.

2 Turbomachinery Components

2.1 Design of cascade and ducts in transonic flow

A methodology to solve inverse design problems for channels and blade rows, assuming the flow to be multidi-

mensional and the fluid inviscid, compressible and ideal, is described in [1]. The methodology is based on the

procedures described in [2] for the solution of inverse problems in 2D channels, in [3] for 2D inverse cascade

problems, in [5] for 3D inverse blade rows problems. An updated version of the methodology is described in

[6] for both 2D and 3D inverse problems in channels and blade rows•

The basic idea is described in [2]. Briefly, a tinle-dependent computation is performed in a duct, where a

distribution of pressure is prescribed on a wall, the geometry of which is unknown and has to be determined.

Such a wall is a boundary of the flow field and it is assumed as a flexible and hnpermeable surface. Some

initial configuration is guessed for the shape of the wall and for the internal flowfleld. During the following

transient the flexible wall move in a wavy fashion and, at the end, it will assume the steady shape required

by the prescribed pressure on it and in agreement with the steady internal flow.

A coordinate transformation is used in order to map the physical region, whose shape depends on time, into

a computational domain, whose shape is independent of tinle. The Euhr equations are integrated in time by

a finite difference method on the time-dependent, body fitted, grid defined by the mapping.

In order to show the way the solution is gained in time, we report here one of the examples of [2]. The Pdnghb

flow [8] was taken as benchmark case. A set of streamlines ¢ = const of the Ringleb flow are plotted in fig. 1.

Once two streanflines are selected, they may be regarded as the solid walls of a channel, and, from the point of

view of an inverse problem, the theoretical pressure acting on these may be taken as the design input datum•

The chosen channel is in the transonic region, and is confined by the streamlines ¢ -- 0.8, ¢ = 1.0 and by the

radial coordinate lines 8 - 40 °, 8 = 90 °.

Fig. 2 shows the shapes of the walls during the transient (solid lines), from the initial guessed configuration

(K = 0) to the final one (K = 500). The dots denote the theoretical location of the streamlines. The

maximum relative error of the location of the wall points is less than 0.6%, while the maximum relative error

of the computed Mach number in the whole flow field is less than 0.4%

J
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[ Since [2] was published, several improvements have been done. Upwind numerical schemes have been adopted'
/

to attain consistency with the wave propagation phenomena described by the Euler equations, as a consequence

the computation at the boundaries has been improved; the extension to 3D problems has been shown feasible;

different formulations have been attempted. The path of the evolution runs from [2] to [6].

2.1.1 The cascade problem

For a 2D cascade of airfoils, tile inverse problem consists of finding the geometry of a cascade producing a

flow of which some parameters are prescribed, There is a certain freedom in the formulation of the problem.

We confine the discussion in the present report to problem for the 2D and 3D cases, where, in addition to

suitable condition at infinity one may prescribe the distribution of thickness and load along the chord of a

profile, and inquire for the geometry of the camber line.

In [2] - [6], the problems are solved by using the technique briefly outlined in the previous section: a time-

dependent computation is performed, in which the boundary conditions are imposed according to the formu-

lation of the inverse problem, until a steady state is reached asymptotically. The contours of the blades are

considered as impermeable but perfectly deformable. An initial geometry is assumed. Since such a geometry is

incompatible with a steady motion, consistent with the prescribed conditions, a transient is generated. During

the transient, the walls of the blades change in shape, in order to satisfy the condition of impenetrability. The

solution of the inverse problem is given by a geometry obtained asymptotically.

The reader may refer to Ref.[3] and Ref.[7] for the discussion of the 2D different problem formulations.

We proceed now to describe the process, in particular the boundary conditions, that have been chosen to

generate the solution, confining ourself to the physical viewpoint.

Figs. 3a) and 3b) show typical initial and final configurations. The flow is assumed to be confined between

two consecutive blades, the arcs BC, and two parallel lines issuing from the leading edge and the trealing edge

of the blades. The lines in front of the blades are denoted by AB. The lines behind the blades are denoted

by CD. Such boundaries are assumed to be impermeable and perfectly deformable; therefore, we can think in

terms of a flow within a channel, the geometry of which may change in time, although its width (measured

parallel to the y-axis) is independent of time. The channel is confined by the permeable boundaries AA and

DD, upstream and downstream, respectively. The inlet boundary AA is considered fixed in time, whereas

the exit boundary DD can slide upwards and downwards, maintaining a constant pitch. A time-dependent

computational grid, which fits the boundaries, is defined inside the channel.

The design data are prescribed, according to problem formulation, by giving the distribution of thickness r(z)

and pressure jump between the two sides of the blades, Ap(z). Since the flow is periodic, the upper and lower

boundaries of figs. 3 can be reduced to a single boundary for a single blade, as in fig. 4. Note that the upper

part of the ABCD line in figs.3 is the lower boundary in fig.4, and viceversa.

The arcs, AB and CD are deformable and impermeable interfaces, across which the pressure is continuous but

the tangential velocity component may be discontinuous. In formulating the boundary conditions, the whole

ABCD arc can be treated homogeneously. The interfaces can be considered as surfaces of blades for which a

vanishing thickness and a vanishing pressure jump are prescribed. With this convention in mind, we procede

to describe the technique for any blade surface.

In fig. 5 we show two grid points on two different sides of the blade, at the same abscissa. The velocity vector

is decomposed along the tangent and the normal to the blade at each point. Since the blade is impermeable,

the two flow velocities and the blade velocity nmst have the same normal component. Moreover, by imposing

the pressure jump Ap(z) to be constant in time, the boundary conditions that allow the geometry and the

the flow to be updated at each computational step, are obtained.

At the inlet boundary AA (figs.3) we prescribe the total pressure, the total temperature and the flow angle,

if the flow is subsonic, whereas all the flow quantities are prescribed if the flow is axially supersonic.

At the exit boundary DD no boundary conditions are needed if the flow is axially supersonic, while in the

case of subsonic flow, the kind of boundary conditions to be enforced has to be selected carefully, in fact, as

it is discussed in [1] and [3], the inverse probhm has not an uniquely defined solution. The kind of boundary

conditions that is used selects one solution among the possible ones.

The numerical process used approximates the governing equations written in quasi-linear form, as a conse-

uence it is not conservative and weak solutions are not captured spontaneusly, but they need some special| _2
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Ftreatment. This shortcoming is the price to be paid for the main that numerical of-ladvantage our process

fers: the capability of computing the boundaries in a way consistent with domain of dependence due to the

hyperbolic nature of the governing equations, avoiding the need for spurious additional numerical boundary

conditions. This point iscrucial for the success of method,in fact the computation in a domain whose physical

shape depends on the solution is very sensitive to the way the boundary condition are enforced and any

nlistreatment may produce catastrophic instabilities.

Moreover, the inverse problems that generally one asks to be solved are shockless and the need for shock-

capturing capability is rare; if this capability is requested, the scheme can be easily converted in a conservative

Flux Vector Splitting scheme, as described in [12].

In the early formulation [3]-[5], a numerical procedure to solve inverse problems has been developed according

to the lambda-scheme [9] and [10]. Briefly, the wave system affecting a given point in an unsteady flow

field is described by four orthogonal waves. The A-scheme uses one-sided differences to approximate the

compatibility equations relative to the four waves, according to their direction of propagation and, as a

consequence, satisfying the domain of dependence. The computations of a transonic shockless compression

comes quite accurate and, besides that, the computation at the boundaries is simple and naturally suited

for this kind of numerical scheme based on compatibility equations, avoiding almost completely the need for

numerical additional boundary conditions.

Two numerical examples are here presented according to the selected formulation and prescribing the static

pressure pc as exit boundary condition. Further examples are shown in Ref. [3].

Fig. 6 shows the initial configuration and fig. 7 the steady solution to the inverse problem for the case

corresponding to

_- = .025 [1 - cos(2,_x)] Ap = c [a - cos(2,_x)] (0 < ,_ < a)

The ratio p_/pO between downstream pressure and total pressure is 0.8, the upstream flow angle or, is 20 °,

and tile upstream nondilnensional total temperature ®o is 1, while c = .1. Both this case and the following

one have been computed using 40 intervals in z and 10 in V.

A check on the accuracy of the computation is shown in fig. 8, where the theoretical behavior of the y-

momentum is compared with the numerical result. The maximum error is less then i%.

The case of fig. 9 has the same _', ai, and O ° as in the preceding case, but c = 0.15 and pe/pO = 0.71.

Tile resulting cascade is supercritical but unchoked and shock]ess. It can be seen from the isoMach fines of

fig. 9 that a supersonic bubble appears on the upper side of the blade, but the lower side is entirely subsonic.

The pressure cannot be discontinuous on the subsonic side; therefore, it must be continuous on the supersonic

side as well, since Ap is prescribed as a continuous function of x.

A further example is presented in fig. 10. It refers to the axial cascade with supersonic inlet Mach number,

but having subsonic axial component. In this case the reghne of unique incidence is established and it requires

a boundary condition at inlet with does not violate the simple wave region upstream of the cascade. This is

obtained by imposing, at the inlet boundary, besides the total pressure and total temperature, the compatibilty

relationship between Mach number and flow direction along a Math line for steady supersonic flow. In fig. 10

the isomach contours are presented; the inlet Math number is equal to 1.19, while th exit flow is subsonic and

the cascade is shockless. In fig. 11, as a check, in the odograph plane the upstream flow field is presented.

The simple wave region is well described, as it can be seen by the points belonging to a unique epicycloid.

In Ref. [4] a different formulation of the 2-D inverse problem is attempted: instead of looking for the shape

of the walls, which in turn define the grid, it is looked for a whole orthogonal grid which adapts itself to the

solution of the inverse problem, the Euler equations are written by assuming a set of indipendent variable

that, at the steady state, coincide with the stream function and with a curvillnear co-ordinate along the fines

orthogonal to the streamlines. The Euler equation so written are integrated in time according to the A-scheme,

the numerical process turns out very sinlple and quite accurate. The main drawback of method presented in

[4], is that such method has not a straighforward extension to 3-D problems.

L The success of a computational method aiming to solve multidimensional problems governed by the time-
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Fdependent Euler equations lies mainly and obviously the scheme and the oilon integration on treatment

the boundaries. The A-formulation shows good qualities in both respects, it does not violate the domains" '

of dependence and it allows the boundaries to be treated in a way consistent with the wave phenomena
approximated in tile inner flow field. Nevertheless, the upwind schemes to approximate nmltidimensional

wave phenomena have a sort of weakness being necessarily based on the approximation of waves propagating
along a finite number of directions, while the possible directions along which actual waves propagate are
infinite. The problem is addressed in Ref. [10], and, more recently, in Ref. [11]

Following Ref. [11], the 3D time-dependent Euler equations written in tensor notations, can be rearranged in a

form suitable for upwind discretization by decomposing the 3D unsteady motion as due to waves fronts paralhl
to the coordinate surfaces; the resulting set of equations prompts an upwind discretization that preserves the

3D nature of the actual flow and that is particularly convenient from the point of view of the treatment of
the boundaries.

The resulting scheme is very close to the A-scheme, coinciding with it for orthogonal grids; moreover, the
boundaries can be treated avoiding completely the need for local frames of references and additional boundary

conditions, even in the case of non orthogonal grid. Details on this matter can be found in [11].

2.1.2 Examples

Here three numerical results are presented: the first one refers to the design of a 3D rotational, transonic,

convergent-divergent nozzle, while the other two refer to the design of turbomachinery bindings. In order to
test the capabilities of the present inverse technique, in ReL [1] the authors choose an example with a distorted

geometry, quite far from the guessed initial one. Fig. 12a) shows the 3D view of the initial configuration
and Fig.12b) the final one that solves the inverse problem. The solid walls are planes. The design pressure
distribution on the lower moveable wall is

Pd = .8 -- .7z 3

on the upper wall:

pc = .s - .3511-

On the inlet boundary the total temperature is kept uniform and constant in time O° = 1, the flow velocity
has the direction of the z 3 coordinate lines and the total pressure obeys the law:

po 1 Ap°(y 1 1 1 1= - - - ); ° = .1

The resulting flow is rotational and non homoentropic.

Figg.13a), 13b) show the isoMach lines over the left and right solid walls, Figg. 14a), 14b) over the upper and

the lower moveable walls and Figg. 15a), 15b) over the inlet and exit surfaces, respectively. Figg. 16a), 16b)
show the constant-entropy lines on the inlet and exit surfaces, respectively.

The second example refers to the design of the blades of a stator. Figg. 17a), 17b), show the initial and final

3D view, respectively. The tip and hub solid annulus walk a_e cylindrical with rt/rl, = 1.5.
The design thickness and the design loading are, respectively:

[ _/__ 1/_j Ap = .08 sin [ t_- _t J

with 1/t3 - !/3 =axial chord.

At the inlet boundary the flow is axial. The total temperature is kept constant O ° = 1, while the tototal

pressure is distorted:

p ° = g V/_ + h

with g = .1/(v/_- v/_), h = 1.- gv_/.

At the exit surface, a distribution of pressure, in agreement with an approximate solution based on the radial
equilibrium theory, is given as boundary condition, with ph = .7 at hub radius.

Figg. 18a), 18b) show the isoMach lines on the blade to blade surfaces at the hub and tip radii, Figg. 19a),

19b) on the pressure and suction sides of the blades, respectively. Figg. 20a) and 20b) show the constant

entropy lines at the inlet and exit surfaces. .2



375

Third International Conference on Inverse Design Concepts and Opumtzauon in Engineenng Sciences

(;'CIDI_5-[]'I"). Editor: G.S. Dulik.r'avich. Washington D.C.. October 23-25. 7991.

The constant entropy surfaces coincide with stream-surfaces; as it has been pointed out in Ref. [5], looking-]

at Figg. 20a) and 20b) one would expect to see the typical rotation of such surfaces as consequence of the
!

secondary flows generated in 3D rotational flow. ActuaJay, a streamwise component of the vorticity is correctly

generated, it does not reveal itself as a rotation of the streamtubes, but rather as a peculiar twisting of the

blades: the loading is prescribed as design datum and it cannot be decreased as a consequence of secondary

flows, but the lower is the total pressure (and density) the higher the deflection to provide such loading.

Finally, two integral checks have been done on the continuity and angular momentum of the computed

flow field: Fig. 21 shows the mass flow computed on cross sections along the blade to blade channel; Fig.

22 compares the angular monlentuln evaluated on cross sections along the channel with the corrisponding

theoretical torque due to the design loading.

in the third example the annulus walls form a conical surface at hub radius, and a cylindrical surface at tip

radius. The flow at entry is assumed to have axial direction, with constant total temperature and a parabohc

distribution of total pressure, the smallest being at hub radius. A certain distribution of thickness and pressure

jump as functions of the radial and axial coordinates are assumed, r = g(yl, y3), Ap =/(yl y3). At the exit

surface, a distribution of pressure, in agreement with an approximate solution based on the radial equilibrium

theory, is given as boundary condition, as well as in the previous example.

The initial configuration of the blade row is shown in fig. 23a). The blades are without camber and twist.

Fig. 23b) shows the final configuration of the blade row. Figg. 24 and 25 represent the isoMach lLaes of the

initial and final configuration of blade to blade section at hub radius, respectively. Figg. :26-28 represent the

final configurations of the intermediate and tip blade to blade sections. The threedimensional nature of the

flow field and the twisting of blades is shown in these results.

The flow is transonic, in fact a supersonic bubble extends from hub to tip on the section side. Figg. 29 and

30 show the isoMach lines on the projection on the meriddonal plane of the suction and pressure sides of the

blades, respectively. Finally, figg. 31a) and 31b) show constant entropy lines on the sections normal to the

axis, corresponding to the trailing edges and the exit of the streamtube.

The constant entropy surfaces coincide with stream-surfaces. Figg. 31a) and 31b) show the absence of the

typical rotation of such surfaces and the peculiar twisting of the blade to blade channel, as well as in the

previous example.

2.2 Design optimization of axial compressor

"['he aerothermodynamic design of turbomachJ.nes requires a number of indipendent parameters which results

in a multiplicity of possible design configurations. 0

in order to have an optimized design of turbomachinery components, the choice of many design parameters

requires an optimization problem to be solved in an early stage in the design cycle. The objective function in

a general optimization problem represents a basis for the choice between various equally acceptable designs.

A computational procedure for design and optimi_.ation of axial turbomachines has been presented in [15].

The geometrical and fluid dynamic optlmi=ed quantities are obtained by coupling non linear l_ization

algorithms with methods for flow analysis and design. In the early formulation [16], the optimized design

methodology uses the fluid dynamic analysis at mean diameter for addal turbine/compressors stages.

The optimization procedure presented in [15] and [16], is based on a constrained non linear _ation

problem and is obtained by using thzee different methods: Monte Carlo, Simplez and GradienL The numerical

optmlization strategies used in [16], based on a combination of the previous methods, has shown that the best

results are obtained in general by enforcing the three methods sequentially.

In the work presented in [17], the authors used objective functions that are composed not only of a single

variable, but of a combination of variables. This is done in order to avoid the improvement of a single quantity

(e.g. efficiency), to the detriment of other important compressor characteristics. Moreover, multivariable

objective function is used so that the optimum design of an aerospace or industrial compressor can be found

using the same numerical procedure and ascribing suitable importance to the efficiency (_?TT), stall margin

(identified by a coefficient Ch) and weight of the machine (identified by a speci.f area A,v), whose linear

combination represents am appropriate objective function.

L For the design of an. aria[ flow compressor stage, the following parameters are taken as the design variables.'_
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Xl = stage enthalpy drop (0)

X._ = inlet flow coefficient (_)
X3 = stator outlet absolute flow angle (c_3)

X4 = mean diameter of the stage (D,.)
X_ = rotor axial velocity ratio (AVRR)

XG = stator axial velocity ratio (AVRs)
X7 = stator solidity (O's)

Xs = rotor solidity (an)

X9 = rotor blade chord to mean diameter ratio (Cn/D.,)
X1o = stator blade chord to mean diameter ratio (Cs/D,,)

Xlt = stator max thickness to chord ratio (t,,/C)s
X12 = rotor max thickness to chord ratio (t,,/C)n

Tile design process is shown in fig. 32. For given design specifications, the design paranreters, defined at
mean diameter, are guessed at the beginning of the computation and they define a first rough design wich is

modified during the analysis design procedure in order to minimize the objective function. The evaluation
of the efficiency is performed by using performance analysis of the stage defined by the actual values of the

indipendent variables, while the stall margin is computed by using some simple correlation [19] suited for
prelinfinary design studies.

The constraints of the optinfization design method could be of two kinds. That is, rectangular constraints
wich are directly applied 0n the design variables and they come from the field of the possible applicability
of the correlations used in the objective function evaluation. However, a direr constraining of any single
design variable does not ensure that, in a particular combination of them, some of the mechanical or fluid

dynanfic variables could exceed the usual limits. For these reasons, non-rectangular constraints have been

chosen: they are related to the aerodynamic loading, flow instabilities, limiting flow rate through a flow path
element, aeroelastic aspect of compressor blade rows, and noise generation. In order to take into account

these non-rectangular constraints of the problem it is necessary to introduce in the optimization procedure

the penalty function technique. The optimization problem is stated as a non linear programnfing problem as
follows: find X that mininfizes

f(X) = G,j(I- rn,T) + GA(I - As,v) + Gc(l - Ch)

subject to the constraints

(1)

]

X_ < Xi < X" i= 1, m gj(X) j = 1, n (2)

where G,,, GA and Gc are coefficients.Details of the method are given in Ref. [18].

In the following examples, the complete optinfiJstion method was first used with a single objective function
coincident with r/TT and then with a multivatiable function (_TT, Ch, A,v).

From [17], the design of a stage of a small axial compressor (4 kg/s) with a high pressure ratio (/$rT = 1.65)
is presented. The design variables are shown in Tab. 1, while Tab. 2 presents the numerical values of the
constraints. The optimization has been performed with a single variable objective funcion, the total-to-total

stage efficiency.

The initial stage efficiency value of 0.875 grows up to 0.927, with the absolute exit flow angle a3 < 20 °.

The optimized results shown in Tab 1 have been obtained by imposing different limits to the stage (c_3).
As shown, the design variables, _b, _, AVR and cr seem to be particularly sensitive to the c_3 limits. The

optimization procedure has carried out a reduction of the relative Mach number (to which shock losses are
related) allowing for a remarkable reduction in the rotor losses (_0Ri = 0.114 and wRo = 0.0675).

Additional calculations have been performed by modifying the inlet flow algle (al), simulating in this way
the presence of an IGV or of a stage upstream. As an example, Tab. 3 shows the results obtained for
al =0;10;20 ° .

In the previous examples it can be seen that, whereas r/TT increases, the other significant design variables

_.ct,,A,.t,) are drammatic_y points necessety operate objective function. J
!

reduced. This out the to with nlixed
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I A design optimization has been performed using a multivariable objective function with different values of]
the coefficients G,,GA and Gc, ranging from 0.0 to 1.0.

/

Table 4 shows the initial values of Orr, Ch and A,v, and the final ones after the optimization process. From

Tab. 4 it is evident that if G, I = 0, the values of rn-T are absolutely unsatisfactory, especially in the case where
GA and Gc are unity. For this reason, the efficiency should always be present in the objective function. In

the case where G,_ = 1 and Gc = 0, a high reduction results in the stall margin (especially if GA = 1).

If G, I = GA = Gc = 1, the dominant effect of GA leads to a large increase in the specific area and also a
corresponding decrease in the starting value of efficiency (from 0.87 to 0.78).

Finally, the analysis of the optimization with the multivariable objective function has been performed varying

GA from 0 to 1, with Gc as parameter and G,_ = 1. The optimum efficiency, plotted in fig. 33, decreases
greatly with GA. The same trend, even if reduced in effects, is shown by Gc. Fig. 34 shows the stall margiu

coefficient; the influence of GA is negligible for high values of Gc, while if Gc = 0 the increase in GA is

positive for the stall margin.

The one dimensional design procedure at mean diameter is simple and is justified by the need for an immediate
definition of the global geometry of the machine and by the possibility of a preliminary design choice, but it

does not provides any informations about the hub-to-tip geometry.

The one-D procedure has then been extended in [15],[18], by coupling the numerical optimization strategies
with 2-D flow computation in the meridional plane (through-flow analysis) in order to have an optimized

radial distribution of geometrical and aerodynamic quantities. This makes possible to optimize the radial

distribution of the lualn geometrical and fluid dynamic parameters of the stage. Nevertheless, the method

solves non linear equations by an iterative technique and therefore their introduction in the optimization
procedure could be quite expensive as far as the computational time is considered due, also, to the high

nuinber of iterations required by the nfinimization.

Some difficulties is rappresented by the choice of the design variables. In a previous work [20], the authors
chose to deal with three radial sections - root,mean and tip - for a total of ten design variables for each single

row, considering fixed the geometry of the meridional section. The results obtained demonstrates the need
for a better definition of the design variables and, therefore of the row geometry. In ref. [18], the coefficients

of suitable polynomial that represents the 3-dimensional geometry of the row to be optimized were chosen as

design variables.
The design variables -13 for each row- are all geontetric, as opposed to the procedure presented in the pre-
liminary design. This is due to the assumption that the optimisation criteria will be applied to a machine of

which the design is known, even if only in a preliminary way.
The evaluation of the objective function is obtained with a through-flow calculation by using a matrix method

[21]. The code, furthermore, permits the calculation of the annulus wall boundary layer with an integral type

solution [22] and the computation of the secondary deviation angle [23].

The general scheme is illustrated in fig. 35. Starting from initial data (Po,To,13"rr,m) and from the mean
diameter design variables (Xi), and working with a multivariable objective function, the mean diameter

optimum geometry is obtained. From here, by considering a law of radial geometry distribution (e. g. the
free vortex), the values of the the initial data of the through-flow calculation (Dh,Dt,n) and the new design

variables (polynomial coefficients a,) are obtained. Using the same algorithm of constrained mininfization as
in the previous case, the procedure continues until the objective is reached.

The optimization problem uses only one objective function coincident with the stage efficiency.

The procedure has been applied to solve two kinds of problems. In the first one the process is used to redesign

an existing isolated transonic rotor. The one described in [24] is selected to verify the optimization process.
The initial geometrical data of the rotor, which coincide with the polinomial functions to be optimized, are
shown in figg. 36,37 and 38, respectively. The root chord is equal to 0.0388 m and is constant along the

blade span. The calculation is carried out for the design conditions: m = 96.18kg/s and n = 8870rpm. The
initial efficiency (original geometry) is equal to 0.897, while the value obtained at the end of the optimization

process is 0.943, greater than a 4 percent increase. Fig. 39 illustraes the objective function history during the

optinfization. In figg. 36, 37 and 38 in addition to the initial radial distributions, the optimized values are I

L J
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Falso given; it is possible to note how the angle _ib has undergone slight variation, with the maxinlunl variation

at the root (4°). The angle _32b shows the maximunl shift with respect to the initial value at meadspan of the

blade (6°). This involves an increase of the blade curvature in the central zone With slight reduction in the

root and tip regions. The solidity is reduced along nearly all the span, while at tip it change from 1.30 to 1.41.

The nlaximunl thickness/chord ratio has, at the end of the optimization, a more uniform radial distribution.

The optimization operates ill the sense of a reduction of the diffusion factor in the R < 0.4 region (fig. 40),

while ill the upper zone O3 increases. For R < 0.6, the loss reduction is significant as shown in fig. 41; in

the tip region, where a great deal of the losses is due to the shock, although a reduction occurs {from 0.062

to 0.049), it appears to be more contained.

The second example is relative to the use of both procedures (pitchline and throughflow) in order to design

a stage working from tile following informations: mass flow rate= 4kg/s; pressure ratio J37"T = 1.60; P01 =

lO1.3kPa; Tm= 300K. The initial optimization procedure is carried out with an objective function having

the following weights: G, I = 1, Gc = 0.0, GA = 0.0, and with a higher constraint for a3 of 10 °.

The meridional section optimized with such a procedure is illustrated in fig. 42. The rotational speed is

39,500 rpm; optimized efficiency is equal to 0.91, the stall margin is Ch = 0.50 and the specific inlet area is

A, v = 170.

The radial distribution of geometrical characteristics of the blade, from which the new design variables a are

obtained, was aquired by considering the free vortex law for the rotor and inlet section of the stator. For the

stator outlet section, the angle a3b was chosen in a different way (fig. 43). Optimization results are shown

and compared with starting values ill the above mentioned figures.

As far as efficiency is concerned, it must be pointed out that the value calculated with pitchline analysis differs

from the initial finding obtained with the through-flow calculations. This latter, however, changes with the

second optimization process from 0.844 to 0.905, showing at the same time a sufficiently rapid increase.

The previous examples have shown that the optimization technique allows a design of turbomachinery compo-

nents with high degree of efficiency not only in one-dimensional approach, but also in an integrated analysis

in the meridional plane where an optimal radial distribution is obtained for geoinetrical and aerodynamic

quantities.

Tile SalUe procedure has been applied by the authors to solve optimization problems for multistage axial flow
turbines ([25]).

3 Inverse wing section design

Front a fluid dynamic point of view the design of an airfoils looks for a geometry with satisfy the equation

of motion, given some boundary conditions. Two kinds of methodology can be used: the first one imposes

some parameters (such as pressure, Much number distribution, etc...) on the surfaces, while the second one

prescribes some global properties to the flow field, such as minimum drag, shock-free, minimum entropy

generation, etc... Both of them require some constraints in ordez to obtain a final airfoil shape with physical

meaning.

As far as a design technique of the first type is conceived, and in the light of the wen-posedness of the problem,

the distribution of the flow parametes must satisfy some constraints in order to have the solution of the inverse

problem for incompressible flow.

A methodology for solving inverse problem for airfoils by prescribing a pressure or velocity distribution is

presented in ref. [26]. The inverse technique there presented is based on conformal mapping (ref. [27], [28])

for inviscid incompressible flow and it has been extended to the compressible subsonic flow case by applying

the Karman-Tsien transformation. The assumption of inviscid flow is sufficiently approximated unless low

Reynolds numbers are considered, when the boundary layer thickness can change significantly the resulting

geometry. In this case the model is still valid, but the new surface is obtained by the displacement thickness

given by the imposed pressure distribution.

l'he method outlined in ref. [26], consists in mapping the phisical domain z(z, !/), external to the closed line,

ill a senfinfinity strip on the computational domain ((_, _) with 77 > 0 and -z/4 _< _ < _r/4 (fig. 44).

rhe airfoils is approximated by rectilinear elements, and the mapping function, valid for poligonal contours

L
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(ref. [26]), can be written in general form:

0z

O_ f(M,_,a .... am, g .... Cm) m= 1, N (3)

where M is a scale factor, a,, represents the abscissa in the computaional domain of the nodal points of the

elements, g,,, are function of _ and the position of the ruth element on the computational domain, and, finally,

C,,, depend on the change of the tangent to the airfoil along the element ruth as function of a,,,. The C,,

values, which are known ill a direct analysis because the geometry is given, in the inverse design they rapresent

the unknowns of the problem.

In order to evaluate the C,,,, the complex potential is imposed on the central point of the N-2 elements, where

the modulus of the velocity is known. The resulting system with C,,,(m = 1, N + 1) unknowns is closed by

giving the velocity and incidence at infinity, by imposing the Kutta condition, two geometrical constraints at

the trailing edge in order to have a closed profile, and, finally, by imposing the tangent at leading edge to be

perpendicular to the chord. Moreover, if the compressible flow is considered, the Karman-Tsien relationship

is used to trasform the compressible distribution on a fictitious incompressible distributions.

Since the coefficient of system of equations are function of the position of nodal points in the computational

domain which are unknown, an iterative procedure is followed:

1. An initial guessed distribution of nodal points is assumed in the computational domain

2. The system equation is solved by Gauss-Siedel method

3. The equation 3 is integrated by assuming a value of M; the airfoil is obtained in the phisycal plane and

then M is scaled in order to have a computed chord equal to the prescribed one

4. If the position of the nodal points does not coincide with the previous values, the abscissa of these points

are updated

5. The iterative process restarts from point 2 by using the new values of C,,

The method has been applied to the design of airfoils for wich the incompressible solution is known. Fig. 45

shows the incompressible velocity distribution associated to the symmetrical Karman-Treffez airfoil without

incidence, wich is prescribed to solve inverse problem.

The resulting airfoil is shown in fig. 46. Here different solutions, obtained with 16 (triangles), 32 (circles) and

64 (plus) elements, are compared with the exact one. For the 64 elements, tab. 5 shows the abscissa of nodal

points, the exact values YE and the computed Y_v coordinate, and the error with respect to the maximum

thickness.

A further example relative to the Karlnan-Treffez airfoil with camber and 5° incidence, with the prescibed

velocity distribution given in fig. 47, is shown in fig. 48.

The method, which seems to be very accurate in the incompressible case, has been extended to the design

problem by considering compressible subsonic flow. In this case also airfoils from catalogue have been selected

as test cases. For the NACA0012 airfoils with Mo¢ = 0.72, ao_ = 0°; and Mo¢ = 0.5, a_¢ = 3 °, by prescribing

the pressure coefficient reported in figs. 49 and 50, respectively, the results obtained by using 32 elements are

shown in figs. 51,52.

Also for the compressible case the method seems to be very accurate, even when the Mach number is very

close to one on the airfoils.
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